3.790 \(\int \frac{x \sqrt{c+d x^4}}{a+b x^4} \, dx\)

Optimal. Leaf size=91 \[ \frac{\sqrt{b c-a d} \tan ^{-1}\left (\frac{x^2 \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^4}}\right )}{2 \sqrt{a} b}+\frac{\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} x^2}{\sqrt{c+d x^4}}\right )}{2 b} \]

[Out]

(Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x^2)/(Sqrt[a]*Sqrt[c + d*x^4])])/(2*Sqrt[a]*b) + (Sqrt[d]*ArcTanh[(Sq
rt[d]*x^2)/Sqrt[c + d*x^4]])/(2*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0763402, antiderivative size = 91, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {465, 402, 217, 206, 377, 205} \[ \frac{\sqrt{b c-a d} \tan ^{-1}\left (\frac{x^2 \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^4}}\right )}{2 \sqrt{a} b}+\frac{\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} x^2}{\sqrt{c+d x^4}}\right )}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[c + d*x^4])/(a + b*x^4),x]

[Out]

(Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x^2)/(Sqrt[a]*Sqrt[c + d*x^4])])/(2*Sqrt[a]*b) + (Sqrt[d]*ArcTanh[(Sq
rt[d]*x^2)/Sqrt[c + d*x^4]])/(2*b)

Rule 465

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = GCD[m + 1,
n]}, Dist[1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /;
FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 402

Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Dist[b/d, Int[(a + b*x^2)^(p - 1), x], x]
- Dist[(b*c - a*d)/d, Int[(a + b*x^2)^(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d,
0] && GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x \sqrt{c+d x^4}}{a+b x^4} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{\sqrt{c+d x^2}}{a+b x^2} \, dx,x,x^2\right )\\ &=\frac{d \operatorname{Subst}\left (\int \frac{1}{\sqrt{c+d x^2}} \, dx,x,x^2\right )}{2 b}+\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx,x,x^2\right )}{2 b}\\ &=\frac{d \operatorname{Subst}\left (\int \frac{1}{1-d x^2} \, dx,x,\frac{x^2}{\sqrt{c+d x^4}}\right )}{2 b}+\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{a-(-b c+a d) x^2} \, dx,x,\frac{x^2}{\sqrt{c+d x^4}}\right )}{2 b}\\ &=\frac{\sqrt{b c-a d} \tan ^{-1}\left (\frac{\sqrt{b c-a d} x^2}{\sqrt{a} \sqrt{c+d x^4}}\right )}{2 \sqrt{a} b}+\frac{\sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} x^2}{\sqrt{c+d x^4}}\right )}{2 b}\\ \end{align*}

Mathematica [A]  time = 0.0423023, size = 89, normalized size = 0.98 \[ \frac{\frac{\sqrt{b c-a d} \tan ^{-1}\left (\frac{x^2 \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^4}}\right )}{\sqrt{a}}+\sqrt{d} \log \left (\sqrt{d} \sqrt{c+d x^4}+d x^2\right )}{2 b} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[c + d*x^4])/(a + b*x^4),x]

[Out]

((Sqrt[b*c - a*d]*ArcTan[(Sqrt[b*c - a*d]*x^2)/(Sqrt[a]*Sqrt[c + d*x^4])])/Sqrt[a] + Sqrt[d]*Log[d*x^2 + Sqrt[
d]*Sqrt[c + d*x^4]])/(2*b)

________________________________________________________________________________________

Maple [B]  time = 0.006, size = 1000, normalized size = 11. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(d*x^4+c)^(1/2)/(b*x^4+a),x)

[Out]

1/4/(-a*b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x^2-(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2)+1/4*d^(1
/2)/b*ln((d*(-a*b)^(1/2)/b+(x^2-(-a*b)^(1/2)/b)*d)/d^(1/2)+((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x^2-(
-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2))+1/4/(-a*b)^(1/2)/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)
/b*(x^2-(-a*b)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x^2-(-a*b)^(1/2)/
b)-(a*d-b*c)/b)^(1/2))/(x^2-(-a*b)^(1/2)/b))*a*d-1/4/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*
(-a*b)^(1/2)/b*(x^2-(-a*b)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x^2-(-a*b)^(1/2)/b)^2*d+2*d*(-a*b)^(1/2)/b*(x^2-(
-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2))/(x^2-(-a*b)^(1/2)/b))*c-1/4/(-a*b)^(1/2)*((x^2+(-a*b)^(1/2)/b)^2*d-2*d*(-a*
b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2)+1/4*d^(1/2)/b*ln((-d*(-a*b)^(1/2)/b+(x^2+(-a*b)^(1/2)/b)*d)
/d^(1/2)+((x^2+(-a*b)^(1/2)/b)^2*d-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2))-1/4/(-a*b)^(1/2
)/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)+2*(-(a*d-b*c)/b)^(1/2)*((x
^2+(-a*b)^(1/2)/b)^2*d-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2))/(x^2+(-a*b)^(1/2)/b))*a*d+1
/4/(-a*b)^(1/2)/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)+2*(-(a*d-b*c)/
b)^(1/2)*((x^2+(-a*b)^(1/2)/b)^2*d-2*d*(-a*b)^(1/2)/b*(x^2+(-a*b)^(1/2)/b)-(a*d-b*c)/b)^(1/2))/(x^2+(-a*b)^(1/
2)/b))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.80825, size = 1310, normalized size = 14.4 \begin{align*} \left [\frac{2 \, \sqrt{d} \log \left (-2 \, d x^{4} - 2 \, \sqrt{d x^{4} + c} \sqrt{d} x^{2} - c\right ) + \sqrt{-\frac{b c - a d}{a}} \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{8} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{4} + a^{2} c^{2} + 4 \,{\left ({\left (a b c - 2 \, a^{2} d\right )} x^{6} - a^{2} c x^{2}\right )} \sqrt{d x^{4} + c} \sqrt{-\frac{b c - a d}{a}}}{b^{2} x^{8} + 2 \, a b x^{4} + a^{2}}\right )}{8 \, b}, -\frac{4 \, \sqrt{-d} \arctan \left (\frac{\sqrt{-d} x^{2}}{\sqrt{d x^{4} + c}}\right ) - \sqrt{-\frac{b c - a d}{a}} \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{8} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{4} + a^{2} c^{2} + 4 \,{\left ({\left (a b c - 2 \, a^{2} d\right )} x^{6} - a^{2} c x^{2}\right )} \sqrt{d x^{4} + c} \sqrt{-\frac{b c - a d}{a}}}{b^{2} x^{8} + 2 \, a b x^{4} + a^{2}}\right )}{8 \, b}, \frac{\sqrt{\frac{b c - a d}{a}} \arctan \left (\frac{{\left ({\left (b c - 2 \, a d\right )} x^{4} - a c\right )} \sqrt{d x^{4} + c} \sqrt{\frac{b c - a d}{a}}}{2 \,{\left ({\left (b c d - a d^{2}\right )} x^{6} +{\left (b c^{2} - a c d\right )} x^{2}\right )}}\right ) + \sqrt{d} \log \left (-2 \, d x^{4} - 2 \, \sqrt{d x^{4} + c} \sqrt{d} x^{2} - c\right )}{4 \, b}, -\frac{2 \, \sqrt{-d} \arctan \left (\frac{\sqrt{-d} x^{2}}{\sqrt{d x^{4} + c}}\right ) - \sqrt{\frac{b c - a d}{a}} \arctan \left (\frac{{\left ({\left (b c - 2 \, a d\right )} x^{4} - a c\right )} \sqrt{d x^{4} + c} \sqrt{\frac{b c - a d}{a}}}{2 \,{\left ({\left (b c d - a d^{2}\right )} x^{6} +{\left (b c^{2} - a c d\right )} x^{2}\right )}}\right )}{4 \, b}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="fricas")

[Out]

[1/8*(2*sqrt(d)*log(-2*d*x^4 - 2*sqrt(d*x^4 + c)*sqrt(d)*x^2 - c) + sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 - 8*a*b
*c*d + 8*a^2*d^2)*x^8 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^4 + a^2*c^2 + 4*((a*b*c - 2*a^2*d)*x^6 - a^2*c*x^2)*sqrt(d
*x^4 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^8 + 2*a*b*x^4 + a^2)))/b, -1/8*(4*sqrt(-d)*arctan(sqrt(-d)*x^2/sqrt(d*x
^4 + c)) - sqrt(-(b*c - a*d)/a)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^8 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^4 + a
^2*c^2 + 4*((a*b*c - 2*a^2*d)*x^6 - a^2*c*x^2)*sqrt(d*x^4 + c)*sqrt(-(b*c - a*d)/a))/(b^2*x^8 + 2*a*b*x^4 + a^
2)))/b, 1/4*(sqrt((b*c - a*d)/a)*arctan(1/2*((b*c - 2*a*d)*x^4 - a*c)*sqrt(d*x^4 + c)*sqrt((b*c - a*d)/a)/((b*
c*d - a*d^2)*x^6 + (b*c^2 - a*c*d)*x^2)) + sqrt(d)*log(-2*d*x^4 - 2*sqrt(d*x^4 + c)*sqrt(d)*x^2 - c))/b, -1/4*
(2*sqrt(-d)*arctan(sqrt(-d)*x^2/sqrt(d*x^4 + c)) - sqrt((b*c - a*d)/a)*arctan(1/2*((b*c - 2*a*d)*x^4 - a*c)*sq
rt(d*x^4 + c)*sqrt((b*c - a*d)/a)/((b*c*d - a*d^2)*x^6 + (b*c^2 - a*c*d)*x^2)))/b]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{c + d x^{4}}}{a + b x^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x**4+c)**(1/2)/(b*x**4+a),x)

[Out]

Integral(x*sqrt(c + d*x**4)/(a + b*x**4), x)

________________________________________________________________________________________

Giac [A]  time = 1.19227, size = 157, normalized size = 1.73 \begin{align*} -\frac{{\left (b c \sqrt{d} - a d^{\frac{3}{2}}\right )} \arctan \left (\frac{{\left (\sqrt{d} x^{2} - \sqrt{d x^{4} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt{a b c d - a^{2} d^{2}}}\right )}{2 \, \sqrt{a b c d - a^{2} d^{2}} b} - \frac{\sqrt{d} \log \left ({\left (\sqrt{d} x^{2} - \sqrt{d x^{4} + c}\right )}^{2}\right )}{4 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="giac")

[Out]

-1/2*(b*c*sqrt(d) - a*d^(3/2))*arctan(1/2*((sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a
^2*d^2))/(sqrt(a*b*c*d - a^2*d^2)*b) - 1/4*sqrt(d)*log((sqrt(d)*x^2 - sqrt(d*x^4 + c))^2)/b